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An Interdiscipliriary Approach t o  High Temperature Chemistry 

M. P. Freeman 

Central Research Division, American Cyanamid Co., Stamford, Connecticut 

In the  f i e l d  of high temperature chemistry, and especially as it pertains t o  the 
effluent of plasma j e t  devices, there has always been substantial  uncertainty about 
the nature of the chemistry tha t  one should expect when the i n i t i a l  high temperature 
stream i s  cooled t o  more conventional temperatures, often in the  presence of an W e d  
cold reagent or spectator gas. A s  a f irst  example, we may c i t e  the cracking of methane 
in  a plasma j e t  t o  make acetylene. For t h i s  reaction, as is  generally the  Case, one 
m u s t  postulate some sor t  of "freezing temperature" because, of course, acetylene i s  
unstable w i t h  respect t o  decomposition t o  the  elements at roomltemperature2 Now, 
three groups of workers have carefully regarded t h i s  reaction. 
tablished that chemical equilibrium at t h e i r  mixed mean temperature determines the 
yield. (They say nothing about what happens a t  the intervening temperatures.) A 
second group concluded tha t  not equilibrium, but rather reaction idnetics c0nt;ols 
the extent of reac t io  u n t i l  the  mixture becomes so cold the reaction "freezes; 
while the  th i rd  group showed t h a t  t he  reaction was very fast and t h a t  t he  kinetics 
of mixing controlled the  reaction rate.  
Reed5 has opined that each group was correct but t h a t  t he  conflicting results stemmed 
from the different reaction conditions and geometries involved. 

One group has es- 

E 
Again a "freezing" temperature w a s  invoked. 

To c i t e  fur ther  examples, consider t he  well-known f ixa t ion  of up t o  3 or 4% of 
the  nitrogen when a nitrogen-oxygen mixture is  passed through a treaming plasma 
device and the stream rapidly quenched. 
from a stationary cascade arc through a f ine  water-cooled probe they obtained an 
unheard of l& yield. 
r a t e  attr ibuted t o  such probes. 
formation tha t  has been accumulated for t h e  reaction of 
plasma t o  make HCN.l Attempts t o  in te rpre t  these ~ l a t a ~ , ~  have resu l ted  in  two 
plausible but contradictory mechanisms e h of which accounts f o r  the  observed re- 
sults very well indeed. On the  one handy the y ie ld  is  exactly what one might 
expect i f  each N+ ion i n  the  j e t  re$ul t s  ultimately in two molecules of HCN. To 
explain how this can happen, one must disregard considerations of chemical equilibrium 
and say t ha t  sanehow the  high temperature molecular and ionic fragments ' fa l l  together' 
i n  the proper way i n  the  very rap i  
The equally a t t rac t ive  a l t e r n a t i v 8  i s  t h a t  the  methane mixes in a qui te  ordinary 
way with the nitrogen j e t  and that the  mixture i s  always in local thermndynaaic 
equilibrium. 
all of the  HCN precursors (assumed t o  be cyano, CN) proceed as before along some in- 
evitable reaction path t o  the  f i n a l  product. The ra ther  sophisticated computer program 
has never been made available fo r  c r i t i c d  appraisal, but assuming it t o  be a straight- 
forward resu l t ,  one must ask whether it shouldn't be possible t o  d i f fe ren t ia te  between 
such diametrically opposed concepts by a consideration of the  relevant time scales. 
Indeed one might suppose th i s  would be standard o p e r a t b  procedure. 

When AmmaM and Timmins withdrew product 

This must almost c e r t d n l y  be associated with the  high cooling 
Again, consider t he  rather substantial  body of in-  

ethane with a nitrogen 

quenching tha t  r e su l t s  f r q  the mixing process. 

A t  some point one has t o  postulate a "freezing temperature" below which 

In the face of such evident need, it i s  in te res t ing  t o  ask why so l i t t l e  has  
been accomplished along these l ines.  
sp i re  t o  place such an analysis outside the  accepted purvue of "chemistry" o r  "chemical 
engineering?" The f i rs t  fac tor  t h a t  comes to  mind is  the  real paucity of information 
about any of the  characterist ics,  but especially the  charac te r i s t ic  times of such 
strongly cooled f l u i d  flow. 
r a t e s?  Another fac tor  i s  tha t  the whole concept of "freezing" a reaction has dways 
been a b i t  nebulous t o  the  chemist. 
t o  equilibrium flow is  of v i t a l  importance, the  chemist has always been pragmatically 
in te res ted  in  forcing the  s i tua t ion  one way or the other and has had l i t t l e  in te res t  

O r  t o  rephrase the question, what factors con- 

Is  it reasonable t o  even think about meaningful quenching 

Although the t rans i t ion  f'raon frozen f l o r ~  
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i n  systematic study of the compromise si tuation. Similarly experimental pu r i s t s  and 
theoretical  chemists have generally t r i e d  t o  avoid non-isothermal si tuations i n  view 
of t he i r  general analyt ical  i n t r ac t ib i l i t y .  It is i n  f a c t  only with the advent of 
streaming thermal plasma devices (and of reentry) t h a t  veloci t ies  and residence times 
have achieved such e,utreme values tha t  one might expect elementary reaction steps t o  
be spat ia l ly  resolved and temperature changes t o  be so abrupt t ha t  atomic, ionic, and 
f r ee  radical reactions may not proceed along t h e i r  anticipated course (c.f. the inex- 
plicable inact ivi ty  of 11 atoms i n  HCN synthesis). 

' 

The purpose of the  present work i s  t o  attempt t o  formulate a framework f o r  examin- 
ing these questions and t o  t r y  the formulation out on a nitrogen plasma configuration. 
I n  the next part  we formulate an expression fo r  a c r i t i c a l  quenching r a t e  vs tempera- 
ture.  
devices under vaxious conditions and establish t h a t  "frozen f low"  i s  probably the 
ru l e  for both ionic and atomic recombination. 
where one m i g h t  e*ect t h i s  t o  lead, introducing the concept of characterist ic re- 
action times s o  as t o  f a c i l i t a t e  choosing between alternatives i n  the  frozen flow 
regime. 

In the  following section we examine the cooling sequences of a few plasma j e t  

Finally,  we speculate a l i t t l e  on I 

Threshhold Frozen Flow I 

The problem starts wi th  a f u l l y  equilibrzted high temperature flow system. The 
concentration of sane species, thought t o  be chemically relevant, emerges from, say ,  
a f r ee  energy minimization program9 
I n  either case, we represent the concentration of the interesting species ( i n  moles ~ r n - ~ )  

i n  some cases, a simple equilibrium calculation. 

by (r): 
(1) 

where P and T have t h e i r  usual significance and NAY TiB,. . .represent the component molar 
'composition of the mixture (as opposed t o  the species composition). 
t h e  temperature of this mixture t o  decrease we may  formally writc fo r  the time r a t e  
change of (r): 

I f  we now cause 

I 

where t represents time. The equil'brium value a t  temperature T of t h e  concentration 
of the species of i n t e re s t ,  (r), i s  the r e su l t  of a balance between a set  of ra.pid 
forward and reverse reactions:  

- 

A t  equilibrium at constant temperature both sides of Equation 3 axe equal t o  zero by 
definition of the equilibrium process. As long as the  temperature change is  suff i -  
c ient ly  slov t h a t  

I 

where the left-hand side of Equation 4 i s  determined from Equation 2, He say t h a t  we I 
have equilibrium flm. 
calculated again from Eqxation 2, i s  much larger  than that of e i ther  of the right-hand 
terms in Equation 4, then kinet ic  considerations preclude maintaining any semblance 
Of an equilibrium comp0sition;and we  say we have frozen flow. %do performed sui table  calculations f o r  a i r  expanded through a hypersonic nozzle 
and showed that  th is  cross ,over f r o m  fully equilibrated t o  f u l l y  frozen flow i s  very 
abrupt. 
may be considered discontinuous, and he swgested modeling it i n  t h i s  way. 

If on the other hand, the absolute value of the left-hand side, 

In a c lass ic  work, 

The r e su l t s  of his det'ailed calculation indicate i n  f ac t  tha t  the t ransi t ion 
:-ie went 
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or. t 3  arms! (though h d i r e c t l y )  t h z t  any c r i t e r ion  gmxaiiteed t o  l i e  well within 
this t ransi t ion region cwuld therefore be used t o  establ ish the  freezing condition. 
Tn h i s  czse t h e  condition would be a particlrlrm e q a s i o n  rzzio,  say; i n  the present 
sme?hat  Rore general argument the condition w i l l  be the  r e su l t  oi' arr; or several 
o f  many differect  temperature changing mechanisms , adiabatic eqmsior i ,  r e z t i o n  
heat,  t h e n a l  condiction, addition of a cold gas or l iquid spray diluent,  etc. 
c r i t e r ion  swgested by 3ray is : 

The 

where LTi (T)  represents t h e  total unidirectional reastion rate.  
2 and 5 we obtain f o r  t he  cooling r a t e  required for r^rozen flow: 

Combining Equations 

Iimerical Example. To implement Equation 6, we introduce now the  nitrogen 
Curves of the  equilibrium paxticlc densit ies fo r  nitrogen at 1 a t m  are  system. 

sham i n  Figure 1. 
but one equilibrium at a t ine,for  at no temperature available t o  chemists axe more 
than two species present in chemically s ignif icant  amounts; however, for t he  moment 
we use Figure 1 i t s e l f .  i:early every-reaction rate of interest  f o r  t h i s  s y s t e m  may 
be found i n  a colppendj.um by 3ortner. 
destroying the H species. 

It i s  M e d i a t e l y  clear  by inspection tha t  one need consider 

We consider f irst  the pr inciple  r e a p o n s  

+ 
( 7 )  

+ B + e + e + I! + e ii, = 5.3 x 10~"~ Y-' 

Reaction 11, radiat ive recombination, dominates at temperatures of  l O , O ~ * S  and above, 
while reaction 9, c h a g e  exhange, M a t e s  at lower temperatures. Perfectly 
straightforwand numerical application of these rate expressions together with equilib- 
rium values of species concentrations and t h e i r  derivstives obtained from Figure 1, 
yields a c-e demarcating t h e  cooling r a t e  regime in Figure 2 within which we  expect 
equilibrated ion flow (rjght-hand shaded region). 
12,50O0K on the  one hand because t h i s  carresponds t o  a good j e t  center temperature, 
while  it was stopped at 950O0K on the  lef t  because below t h i s  te-nperature the number 
of ions is  uninteresting. S i n i l a l y  the  lef't-hand shaded region shars the cooling 
r a t e  regime 5xi which ire expect equilibration between atoms and molecules . This 
regime 8s calculated from the  following ( % a n  *on Yortnerl2) : 

The calculation was stopped zt 

0 Above 8000 K, molecular nitrogen has disappeared completely, uini2.e  be?^ !:cIc)O'i-: there 
i s  no atam p v d a t i o n  of consequence. 
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Figure 1: 
tataz pressure as a function of temperature. 

Particle densitiiee of nitrogen a t  1 atm 
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Characteristic Reaction Time. It is instructive at t h i s  point t o  examine charac- 

t e r i s t i c  times f o r  these reaction r a t e s  so as t o  gain more appreciation for  the speed 
at which significant chemical events occur from a more conventional viewpoint. Con- 
sidering now j u s t  the r a t e  expressions, a t  any temperature the reciprocal of 
1/N dN/dt = dln(Ii)/dt w i l l  give the  time required (by extrapolation of a tangent t o  
the  curve) fo r  thg concen t r a t ip  of the  species of in te res t  t o  decrease t o  l / e  of i t s  
value. A t  12,500 K and 10,000 K the  charac te r i s t ic  times are 64 and 320 bsec, 6"s- 
pectively. Similarly defined atom/molecule relaxation times at 8ooO°K and 5000 K are 
413 p e c  and 13.4 msec, r spectively. To place these numbers i n  perspective, it has 

flow at 2 atm, a peripherally added reagent has a charac te r i s t ic  mixing time of about 
60 Vsec which requires about 1 cm of j e t  travel.  

Characteristic Quenching Rates 

prkviously been estimated E t h a t  under t y p i c d  laboratory conditions f o r  a tube confined 

As of t he  present time, the  ac tua l  quenching ra tes  achieved i n  various high tem- 
perature f low configurations are not a t  a l l  well known; however,-it i s  necessaxy t o  
make some estimate of these r a t e s  f o r  comparison with the  c r i t i c a l  freezing r a t e  of the 
preceding section. We w i l l ,  therefore, do the  %est we can" f o r  two very important 
si tuations,  turbulent e n t r d m e n t  of a cold stagnant gas on the  one hand and simple 
cold-waled tube confined flow on the  other. There axe, of course, other familiar 
quenching situations : 
pumped coolant added t o  a tube confined j e t ,  and many otherp which have not yet yielded ~ 

t o  analysis, but which almost certainly l i e  between the  two extreme methods analyzed here. 

p e r h e n t a l  r e su l t s  f o r  the very important s i tua t ion  where a 3/4" d i m  argon j e t  
(35Oscfh) i s  allowed t o  turbulently entrain a surrounding essent ia l ly  stagnant cold 
h e l i m  sheath. 
purposes; certainly nitrogen entraining methane would have a t  l ea s t  a comparable 
cooling rate.  A curve derived from the i r  data is  shown i n  Figure 2 and clearly 
demonstrates t h e  ch&racteristic high c o o l b g  r a t e  t ha t  i s  nearly independent of 
temperature. Frozen f low m u s t  c lear ly  be expected fo r  t h i s  quenching method. The 
second flow s i tua t ion  tha t  has been experimentally' characterized i s  fo r  cold-wall 
contained plasma flows. 
i n i t i a l  conditions. The curves come frm the  re la t ion  

cold l iqu id  quenching, cold doorknob inpingement , peripherally 

Thanks t o  the experimental work of Grey and h i s  co-workers 13y14,15 we have ex- 

This should provide a lower bound t o  the  quenching r a t e  for practical  

In Figure 3 "tube average" curves are presented f o r  various 

16 where h ( T )  = H(T) - H(298) and i s  re la ted  t o  the  axial coorainate z by the re la t ion  

In t h i s  expression s is a charac te r i s t ic  flow development length and is experi- 
mentally on t h e  order of 10 diameters ( t o  within a fac tor  of 2). 
t i nu i ty  equation for  t he  velocity term we obtain: 

Using t h e  con- 

-1 For the curves sham, G/A is taken its 0.07 moles 
h(T) axe taken from t h e  extensive tab les  f o r  nitrogen published by'Hilsenrath and 

sec , s as 5 c m  and p(T) and 
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Klein.'' The values CC To shown, m c h  lower than actual entrznt centerline t e m -  

peratures , were chosen t o  correspond t o  eas i ly  attainable net entrant power levels 
for  gas flows of .Ol7 g mole sec 
factor of 10 higher would be obtained with a .020" quenching probe.G 

N a t e  t h a t  all e lse  equal, a quenching rate a 

On the  same figure equilibrium f l o w  regimes are sham fo r  t he  nitrogen atom/ 
molecule reaction a t  0.1 a tn  and 1 a t m ,  respectively. 
average" curves m a r  be believed, we can draw the conclusions that equilibrium flow 
i s  possible i n  a tube. 

To the  extent t he  "tube 

It i s  favored by 

. l a rger  diameters (quenching r a t e  i s  inversely proportional) 

. higher pressures 

. higher parer levels. 

One m a y  equally w e l l  infer t h a t  frozen flow i s  also possible i n  tubes. I n  par t icu lar ,  
a .020" dim tube night very w e l l  be used t o  "freeze" a flow with very nearly the  sane 
efficiency as turbulent entrainment. T 

The "tube average" curves may dras t ica l ly  understate t h e  quenching i n  a tube, of 
course. 
average" model takes a flow f r a n  7000 t o  sub-thousand temperatures i n  a few m i l l i -  
seconds, i n  actual f a c t  nearly one-fourth the t o t a l  flow i s  at 12,0OO0K and goes t o  
sub-thousand temperatures in (probably) comparable times. 
in progress t o  see i f  any great discrepancy i s  encountered; however, Figure 3 agrees 
so well  with the  wr i te r ' s  experience t h a t  it seems unlikely t h a t  any surprises w i l l  
a r i se  i n  t h i s  area. 

Figure 4 i l l u s t r a t e s ,  i n  a very exaggerated way,  t ha t  while t h e  "tube 

Calculations are currently 

Discuss ion 

Frozen flow i s  generally necessary at sane point f o r  t h e  recovery of useful 
products. 
f'reezing is generally inevi tab le  and i n  fac t  generally t o  be expected at f a i r l y  h i &  

for the larger production uni t s ,  such as the Westinghouse unit  described a t  t h i s  
meeting). Once the  f ac t  of frozen flow has been established, one may examine re la -  
tive characterist ic reaction times (such as defined above) t o  t e s t  the f eas ib i l i t y  
of proposed reaction mechanisms (o r  alternatively by reaxrangenent of Equation 6 t o  
est.ablish limiting value on reaction ra tes  then the  infornation is  unavailable). 
J u s t  by way of i l lustrat&on, consider one interpretation of the  HCN experbents c i t e d  

It is 
now c l e w  t h a t  under the<'rewtion conditions the  composition of t he  flmr Treezes long 
enough t o  intermijc well with the carbon-containing species while s t i l l  several per 
cent ionized. 
i s t i c  reaction t i m e  (see .above) for  tine radiative recombination of N' and e 
from 611 ysec at 12,5OO0iC t o  320 Usee at 10,OOOoi(:.+ Thus, we. ar r ive  v i th  nost Of O W  
ims intact a t  a temperature where formation of ?i2 by charge exchange (Ecuation 11) 
i s  t he  fas tes t  available TI'. ion removing reaction (chasecterist ic t h e  = 150 usec). 
Iin.rever, !$ has  v i r tua l ly  no chancc of participating d i rec t ly  i n  bulk chemistry 
because of' the e:rtrenely fast dissociative neutralization reaction 

It i s  c lear  from t h e  trends displayed in the  preceding sections t h a t  

temperatures in laboratory scale uni t s  (but. not. necessarily at such high temperatures \ <  

above that  involves an'i:, intermediate ( a  specie not favored by equilibrium). P+ 

i r  
That is ,  t h e  quenching r a t e  i s  20 t o  30°K (!Jsec)-l vhile the-character- 

lengthens 

-10 vnich clearly has a charac te r i s t ic  time 01' about 10 seconds. Thus, if' the ions 
do 3axticipate i n  th i s  r ex t io r . ,  it must be t h r o w  carbon-containing noieties as 
intermediates. 
equilibrated flow, seems equally ufitenable i n  l ight  of t n e  present considcraiims. 

3y the same token, nowever, t he  alternative exilar,ation, khat 02 I'ul3Y 
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Conclusions 

By taking a freezing c r i t e r ion  from aerodynamics and quenching and chemical 
k ine t ic  r a t e  data from whatever Somces available, it is  clear t h a t  it is possible 
t o  bring nev l igh t  t o  bear,  however poorly in focus, on the subject of high tem- 
perature chenistry, par t icu lar ly  tha t  o f  streaming thermal plasmas. Especially fo r  
tube confined plasmas, t h e  trends with changes i n  t o t a l  pressure, tube diameter and 
input power density a re  seen t o  be straight forward. 
stagnant cold gas i s  seen t o  be fast enough t o  freeze even the  simplest reactions i n  
the  nitrogen plasma system (except- the dissociative neutralization of I?:) while 
f ine  probes a re  seen to be nearly as good. Finally, the  concept of "characteristic 
reaction time" has been invoked t o  help examine illustratively- the  p laus ib i l i ty  of 
a paxticulax reaction nechanism i n  a frozen f l o w  regime. 
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